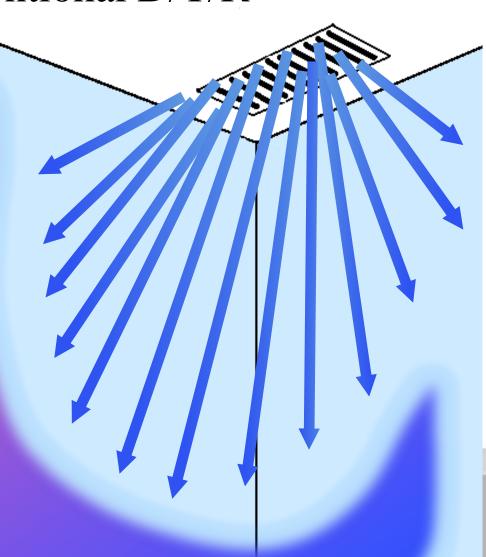
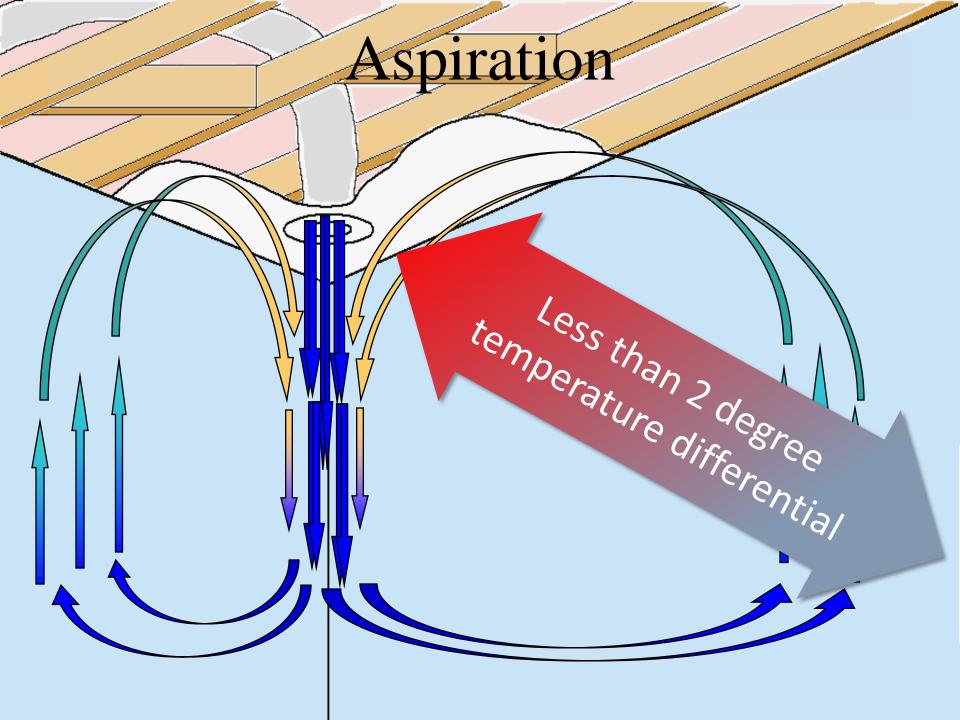
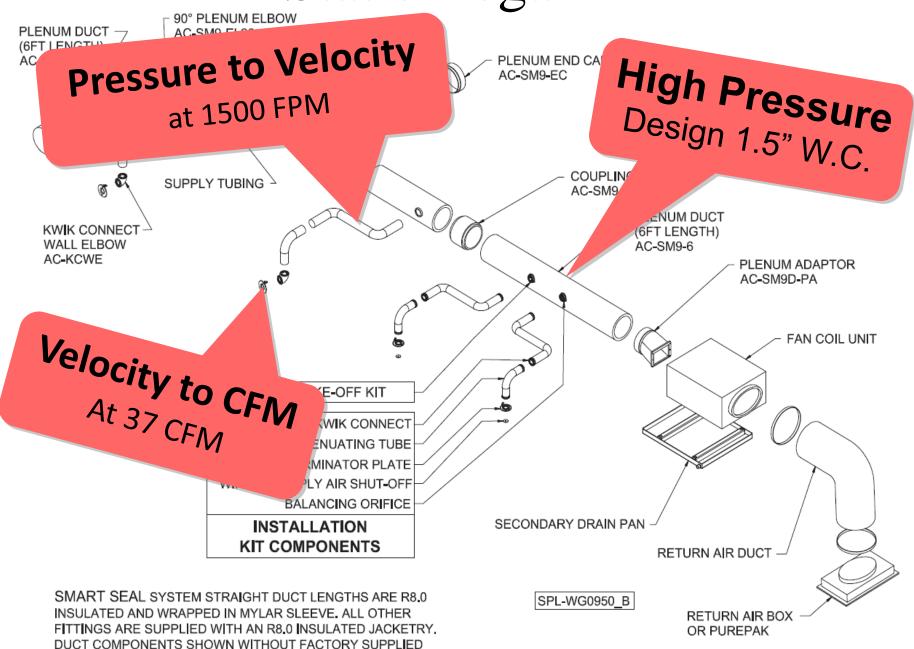

Solutions from


SPACE PACE RAYWHER REPORTS OF THE REPORT OF


System Principle Of Operation Sdhv

Conventional D/T/R

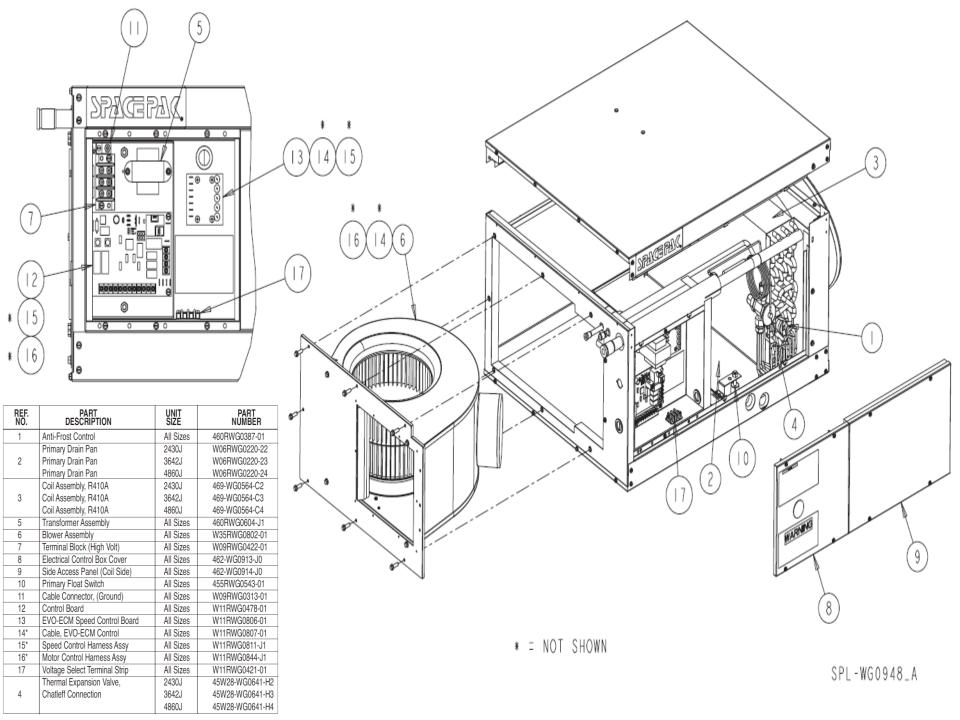
- Diffusion, Throw & Return.
- Air change.
- Works for heating OR cooling, NOT BOTH.



45° PLENUM ELBOW AC-SM9-EL45

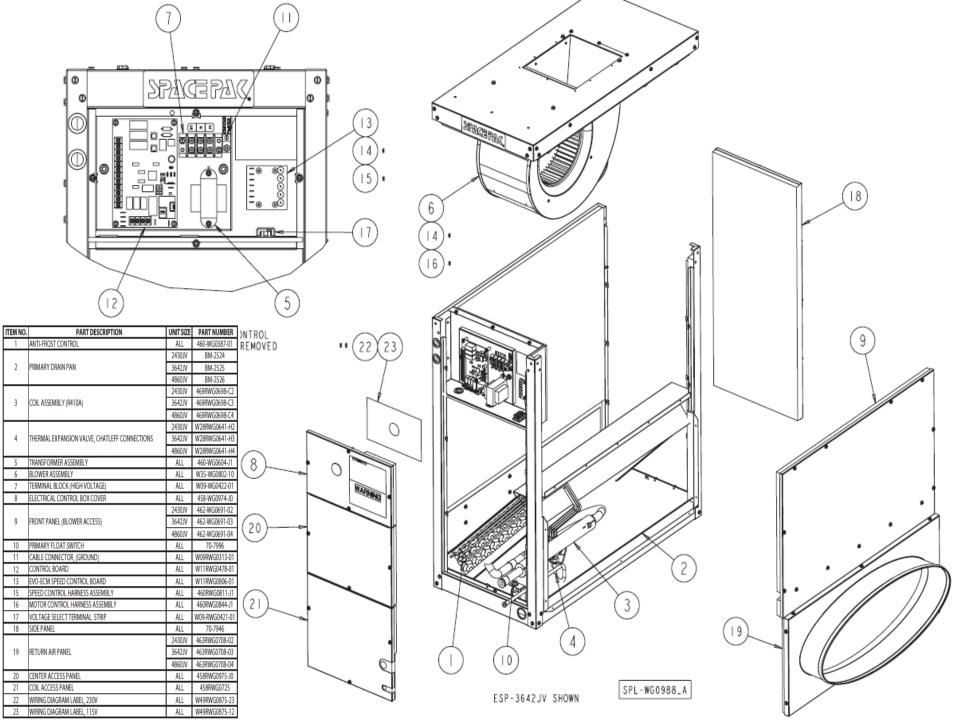
R8.0 INSULATED JACKETRY.

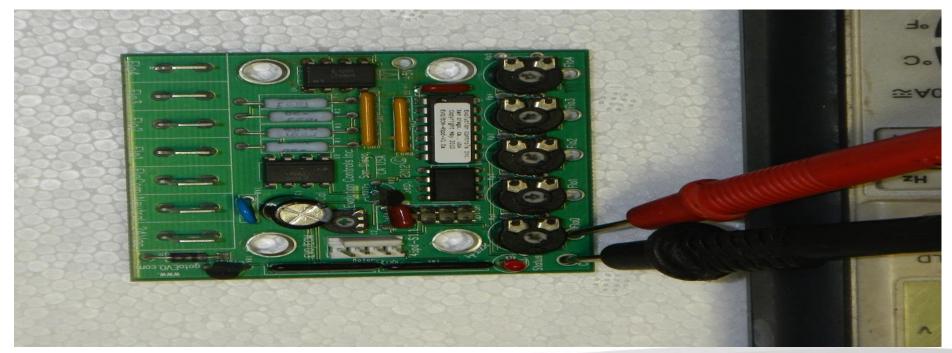
Static Regain



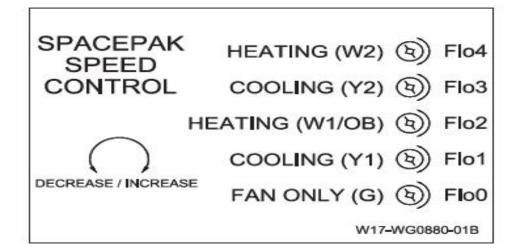
J-Series Horizontal Air Handler

Available in DX or Chilled Water




J-Series Vertical Air Handler

Available in DX or Chilled Water


Air Handler Airflow/CFM Setup

To measure and/or adjust blower signal voltage, remove the speed adjust cover from the front of the unit, exposing the adjustment board as shown below. Place the ground/neutral probe in the lower right hole marked "COM" and the volt probe in the hole marked "Flo0" (for fan only, G call) and measure DC volts between 0 and 5V. Adjust the potentiometer adjacent to the "Flo0" to achieve the desired volt reading. Repeat for remaining adjustments marked Flo1 through Flo4 as indicated on the label inside the cover.

To determine unit airflow, in CFM, measure the voltage corresponding to the current conditioning call, and measure the external static pressure in the plenum, at least 18" from the unit or nearest transition point. Locate the static pressure on the left side of the accompanying chart, and read across until you reach the curve corresponding to the measured voltage. From the point where this crosses, drop a line straight down to read the airflow at the bottom of the chart.

To adjust airflow, locate the nearest system curve, and follow parallel to this curve while adjusting the signal voltage to achieve the desired airflow. If the static pressure falls above or below the desired operating range for the given airflow, then the air delivery system must be adjusted. To lower static pressure, provide additional outlets to the system, to raise the static pressure, install restrictor orifices as described in the Installation and Operations Manual.

Flo4 4 Stage 2 Heating 3 Flo3 Stage 2 Cooling 2 Flo2 Heating Flo1 Cooling Flo0 Fan Only

Static P				Speed Contro					
"WC	5.0V	4.5V	4.0V	3.5V	3.0V	2.5V	2.0V	1.5V	1.0V
2.2	475	380							
2.0	638	547	455	260					
1.8	680	640	600	485	370	100			
1.6 1.5	830	770	710 755	633	555 630	420 500	250		
1.5		815	800	693 735	670	565	250 440		
1.4			800	825	770	688	580	300	
1.0				023	850	765	680	460	
0.8						850	760	555	350
0.6							830	650	460
Static P			CFM's @	Speed Contro	ol Setting (VD)	C) -3642			
"WC	5.0V	4.5V	4.0V	3.5V	3.0V	2.5V	2.0V	1.5V	1.0V
2.2	520					ì		i	
2.0	730	635	540	460	380				
1.8	860	795	730	640	550	410			
1.6	970	910	850	800	695	550	360		
1.5	1,020	965	910	830	740	610	430		
1.4	1,060	1,010	960	890	790	680	490		
1.2	1,150	1,095	1,040	980	880	755	590	340	
1.0	1,230	1,190	1,150	1,095	985	840	680	450	
0.8	1,280	1,260	1,240	1,150	1,080	915	750	580	
0.6	1,310	1,295	1,280	1,230	1,180	980	820	630	300
Static P			CFM's @	Speed Contro	ol Setting (VD	C) -4860			
"WC	5.0V	4.5V	4.0V	3.5V	3.0V	2.5V	2.0V	1.5V	1.0V
2.2	520								
2.0	760	728	695	625					
1.8	920	885	850	800	630				
1.6	1,040	1,005	970	900	760	585			
1.5	1,100	1,060	1,020	950	810	650	400		
1.4	1,145	1,108	1,070	1,000	860	700	500		
1.2	1,240	1,195	1,150	1,080	940	785	640		
1.0	1,325	1,280	1,235	1,140	1,005	860	705	500	
0.8	1,410	1,355	1,300	1,215	1,070	925	775	590	300
0.6	1 470	1 420	1 270	1 275	1 1 2 0	005	0.40	675	450

1,420

1,470

0.6

1,370

1,275

1,120

985

840

675

450

ESP-J - MODEL NUMBER DESCRIPTION

1	2	3	4	5	6	7	8	9	10
UT			CA				SE	СТ	RT

1,2,3, - Unit Type [UT]

ESP - Evaporator DX Fan Coil Unit

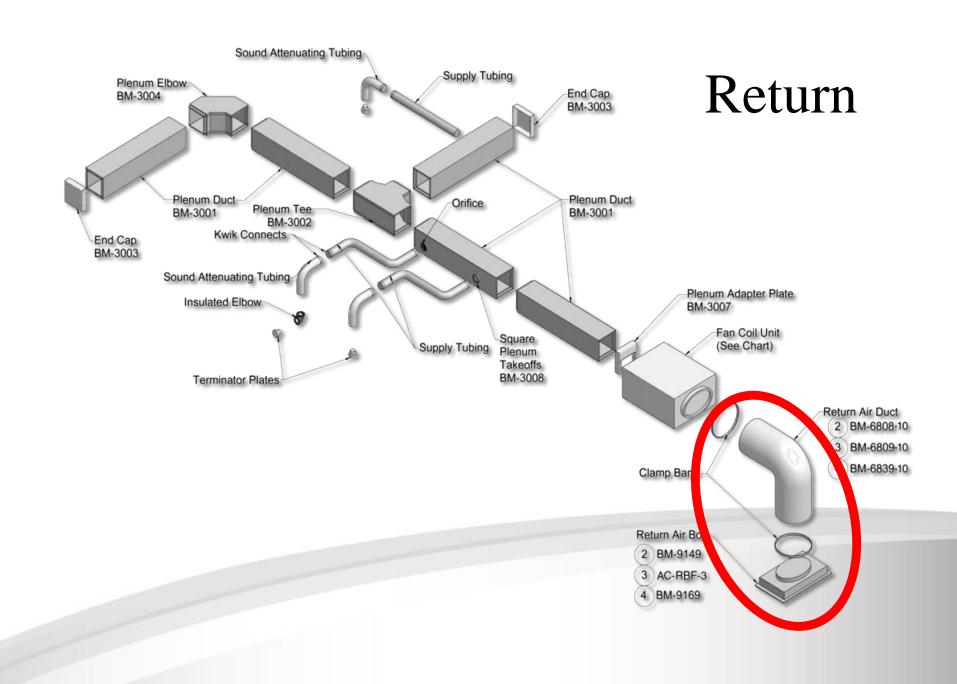
4,5,6,7 - Capacity [CA]

2430 - 24,000 to 30,000 BTU/Hr. (2-21/2 tons)

3642 - 36,000 to 42,000 BTU/Hr. (3-31/2 tons)

4860 - 48,000 to 60,000 BTU/Hr. (4-5 tons)

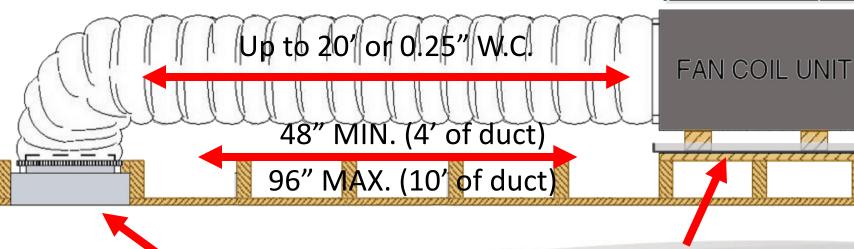
8 - Series [SE]


J - "J" series

9 - Cabinet Type [CT]

H - Horizontal

10 - Refrigerant Type [RT]

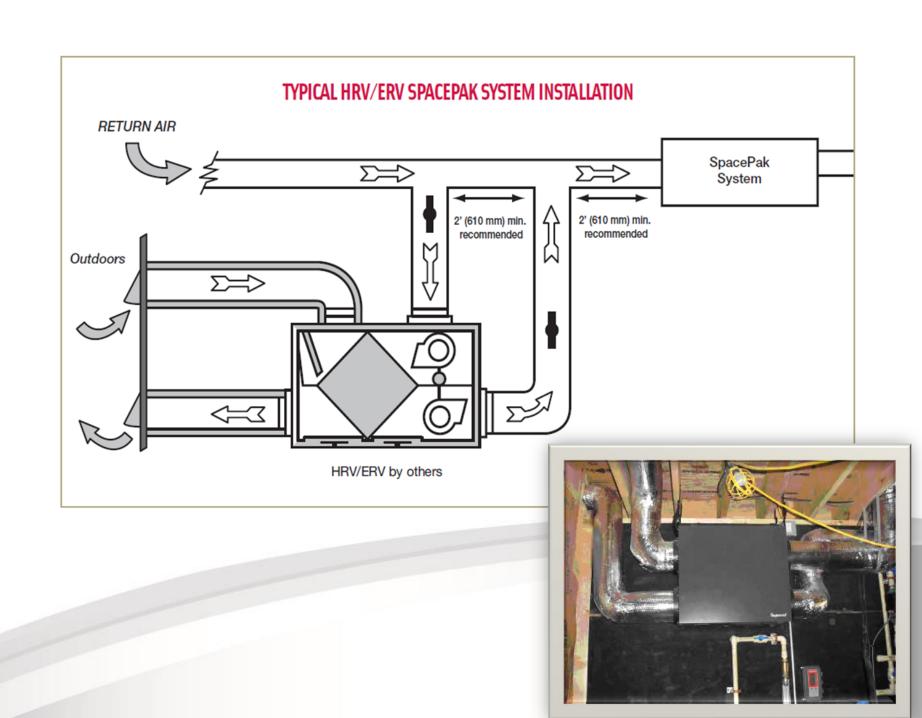

4 - R410A

Return Minimums

Flexible Return Duct (90° bend)

Model	Return Duct		
ESP-2430	15"		
ESP-3642	19"		
ESP-4860	24"		

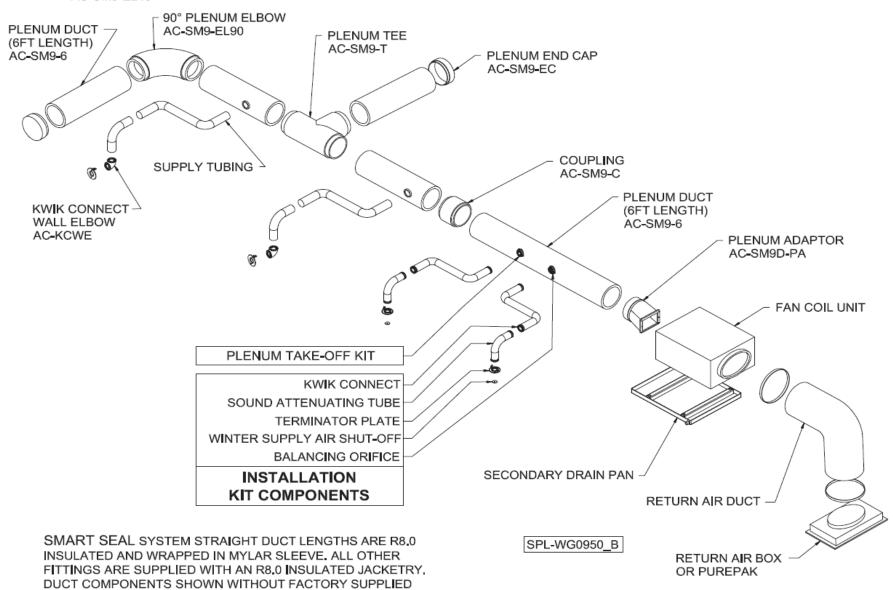
Return Air Box


Platform & Drain Pan

Rules of Install Return Noise

- 1. Size Return in each location for less than 500 FPM
- 2. Size Return in each location for no more than .25" static or less including the filter
- 3. Install at least One 90 degree elbow
- 4. Use at least 4' for sound attenuation material
- 5. Size transfer grills for the CFM and Free Area

Rules of Install Return Multiple Return


MULTIPLE RETURN ACCEPTABLE DUCT SIZE BY TONNAGE									
ROUND DUCT SIZE, LESS THAN 500 FPM		INSURE A QUIET							
	2 TON	2.5 TON	3 TON	3.5 TON	4 TON	5 TON			
AIR FLOW	440	550	660	770	880	1100			
2 Returns									
10' OR LESS	9"	10"	11"	12"	13"	15"			
10' TO 20'	10"	11"	12"	13"	13"	15"			
30' TO 40'	11"	12"	13"	13"	14"	16"			
3 Returns									
10' OR LESS	8"	9"	9"	10"	12"	12"			
10' TO 20'	8"	9"	10"	11"	12"	12"			
30' TO 40'	9"	10"	11"	12"	13"	13"			

Main Trunk

45° PLENUM ELBOW AC-SM9-EL45

R8.0 INSULATED JACKETRY.

Size of Plenum

- 9 inch round = **64 square inches**
- 8 X 8 inch square
- 7 X 9 rectangular
- 6 X 11 rectangular
- 5 X 13 rectangular
- 4 X 16 rectangular
- 3 X 21 rectangular

Maximum Plenum Length 250 feet at 9 inch round IF:

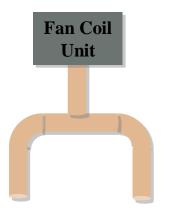
- ✓ All fittings are long radius
- ✓ The system is sealed to stop duct leakage
- ✓ Fittings reduce the length by:
- ✓ 30 feet for Tee's
- ✓ 15 feet for Elbow's

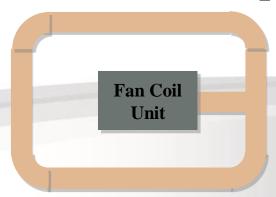
Minimum Plenum Length

Minimum plenum length is determined by minimum distance of:

- 18 inches from outlet of the blower
- 18 inches from a fitting
- 18 inches from the end cap
- 6 inches between take offs minimum

Four Plenum Configurations


The Shotgun


Side Branch

Horseshoe

Perimeter Loop

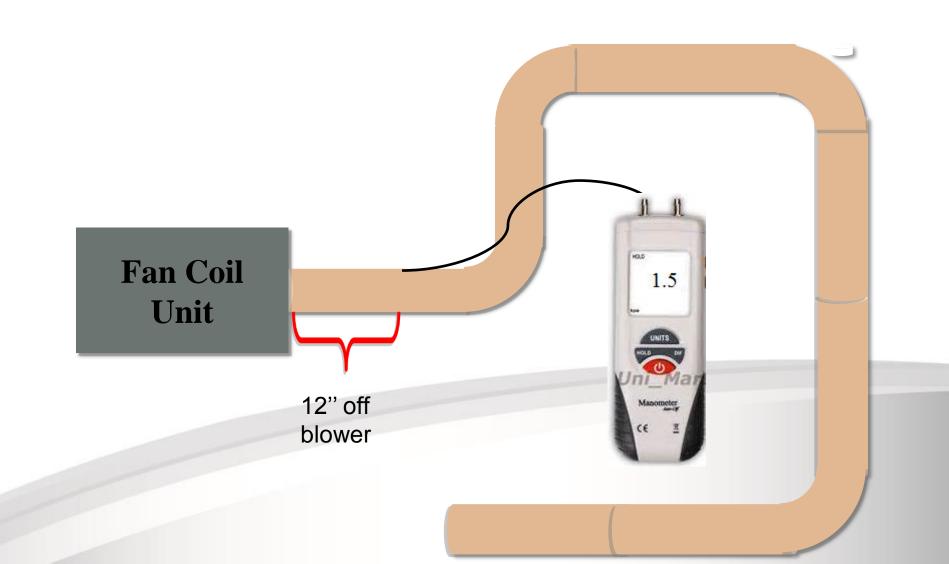
Plenum Configuration

- Always run more plenum and less duct.
- Never have more than 60% of the take offs on one side of a tee.
- Never have more than 30% of the take offs on a side branch.
- You may reduce the size of the plenum by 1 size after a tee or side branch.

Horseshoe **Fan Coil Unit** Minimum 18" No Outlets No More Than 60% Capacity On One Side

Side Branch

Fan Coil Unit


Minimum 18"

No Outlets

70% Of Maximum Capacity

30% Of Maximum Capacity

Checking Static Pressure

How to Retrofit Old to New

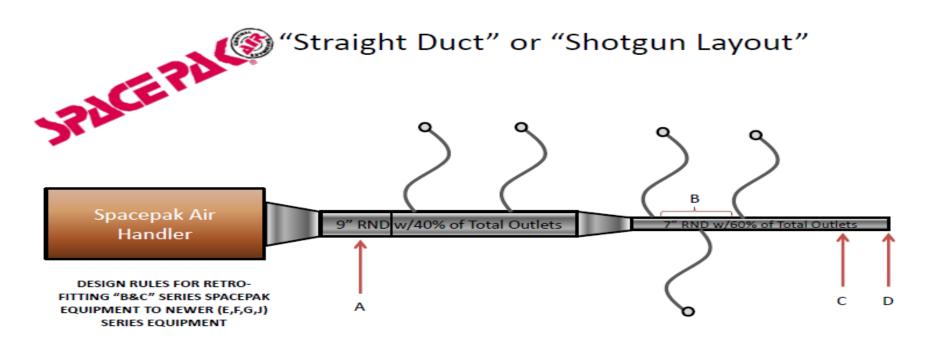
Step 9: B & C Series Unit Retrofits

For retrofitting an ESP-J series unit to an existing ESP-B or C series, some modifications will need to be made to the current system. The necessary changes are below and the extent of the changes is dependent upon the model of the unit. (Refer to Figures 2.30 / 2.31 / 2.32)

ESP-2430 Retrofits

The 7" duct can still be utilized with a transition kit (Part No. BM-6918) available from SpacePak. This kit will reduce the main plenum from 9" to 7" to adapt to the existing 7" duct.

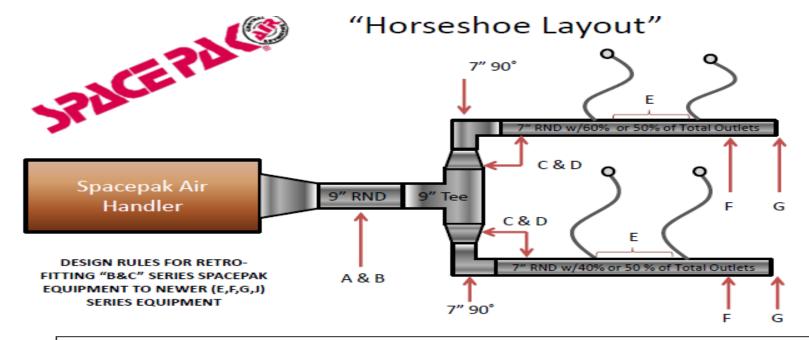
ESP-3642/4860 Retrofits


The existing plenum duct, which is typically 7", will need to be replaced with 8" X 8" duct board or field supplied 9" round duct. The return duct and return grille will also have

to be replaced with the proper parts for the replacement model. The reason for this change is the amount of air supplied by current models is 30% higher than the B & C Series models. The existing 7" duct work will reduce the air flow and cause excessive static pressures resulting in lack of performance and could possibly freeze up the coil which will result in compressor failure due to short cycling.

NOTICE FOR ALL RETROFITS

It may be necessary to add outlets to the system. The number of additional outlets will be dependent upon the external static pressure which should be measured with a manometer. This measurement should be between 1.2-1.5" WC. For more details on this test procedure and location for the test, refer to the System Start Up and Adjustment section in this installation manual.



A: No outlets in the first 18" of straight pipe coming off the Air Handler

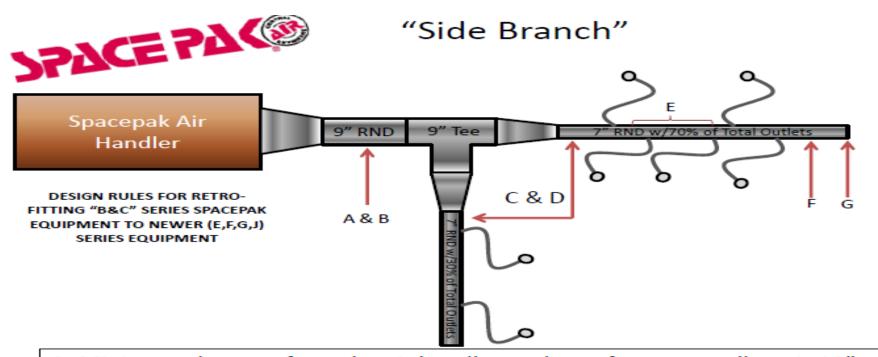
B: Minimum distance between outlets is 6" on center

C: Minimum distance when placing an outlet from end cap is 12"

D: NEVER place an outlet in the End Cap

A: Minimum distance from the air handler outlet to first tee or elbow is 18"

B: No outlets in the first 18" of straight pipe off of the air handler


C: Minimum distance of straight pipe after any tee or elbow is 18"

D: Minimum distance when placing outlet after any tee or elbow is 18"

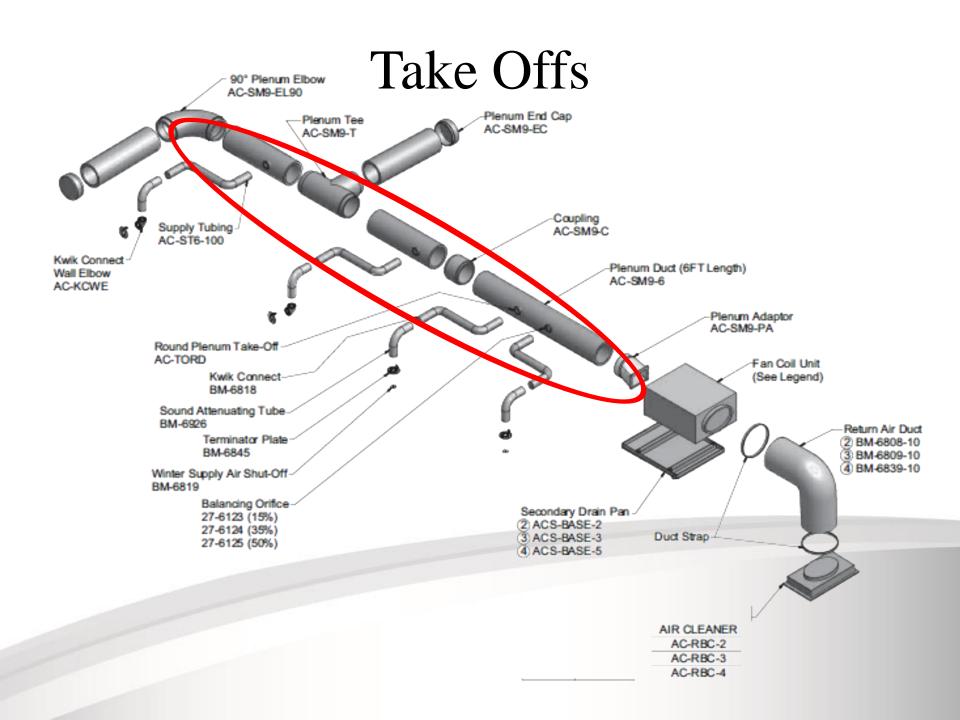
E: Minimum distance between outlets is 6" on center

F: Minimum distance when placing an outlet from the end cap is 12"

G: Never place an outlet in the end cap

A: Minimum distance from the air handler outlet to first tee or elbow is 18"

B: No outlets in the first 18" of straight pipe off of the air handler

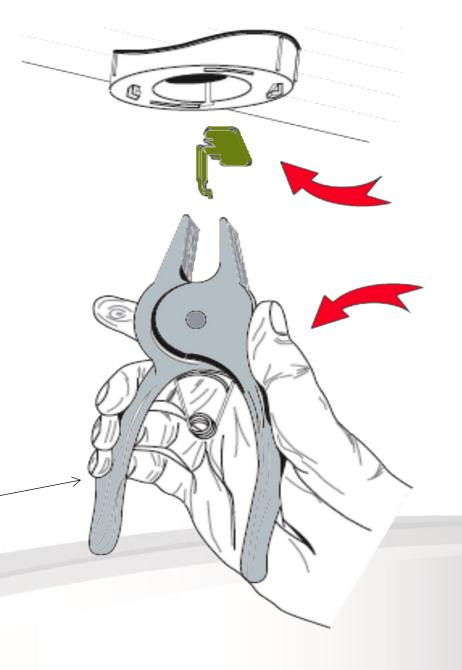

C: Minimum distance of straight pipe after any tee or elbow is 18"

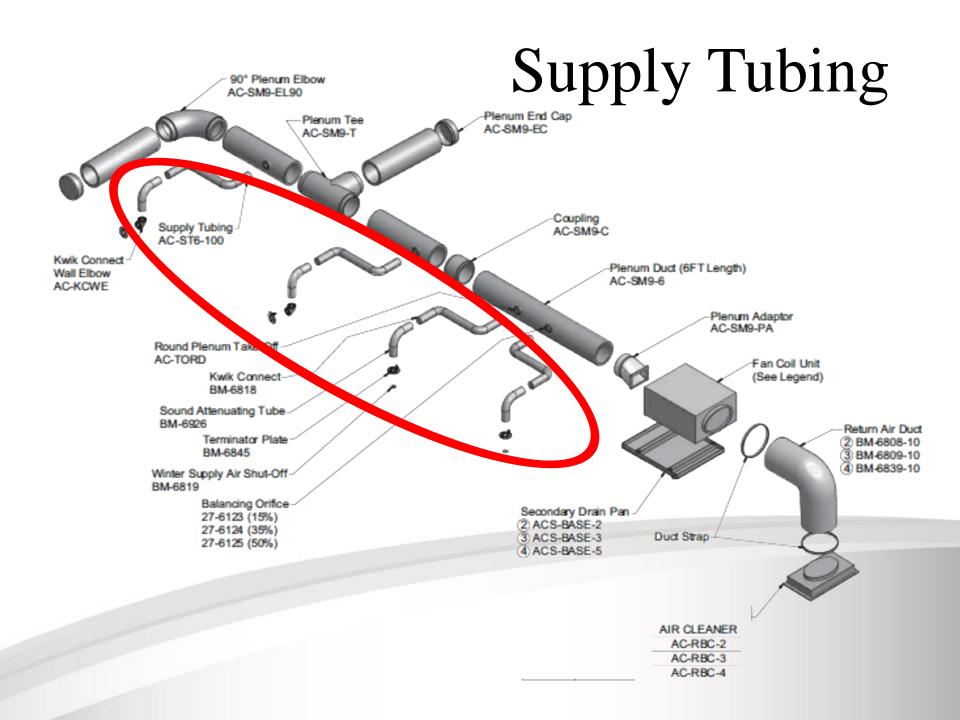
D: Minimum distance when placing outlet after any tee or elbow is 18"

E: Minimum distance between outlets is 6" on center

F: Minimum distance when placing an outlet from the end cap is 12"

G: Never place an outlet in the end cap




2 1/8" Hole saw

PLIERS

Pliers Part #← BM-6998

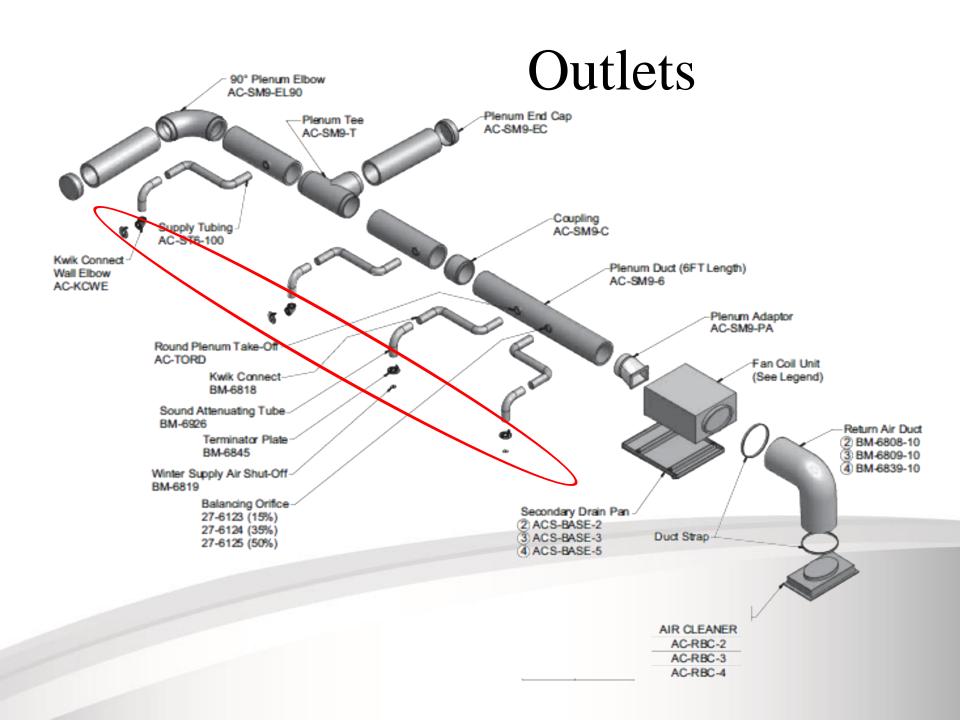
Best Length of Duct Run

- Best length to balance the outlets run: 9 to 15 feet
- Shorter than 9 feet works with duct orifice balancers.
- Longer runs work if more runs are added to make up for CFM lost.
- 10% rule (after 15' 0f supply run you lose 10% for every additional 5')

Outlet Placement in Room

- 1.Place outlets out of traffic patterns.
- 2. Never put an outlet where it will blow on someone.
- 3. Never put an outlet where it will blow on something that will move.
- 4. Never block an outlet.
- 5. Have at least 5 inches from a wall
- 6. Ceiling, sidewall or floor is ok. Aspiration will work anywhere.

6 Outlets Per Ton Minimum


System Size	System CFM	Number Of Outlets	Average CFM	BTU's Per outlet in cooling	
2 Ton	440	12	37	2000	
2.5 Ton	550	15 37		2000	
3 Ton	660	18	37	2000	
3.5 Ton	770	21	37	2000	
4 Ton	880	24	37	2000	
5 Ton	1100	30	37	2000	

10 Outlets Per Ton Max

System Size	System CFM	Number Of Outlets	Average CFM	BTU's per outlet in cooling
2 Ton	440	20	22	1200
2.5 Ton	550	25	22	1200
3 Ton	660	30	22	1200
3.5 Ton	770	35	22	1200
4 Ton	880	40	22	1200
5 Ton	1100	50	22	1200

Outlets

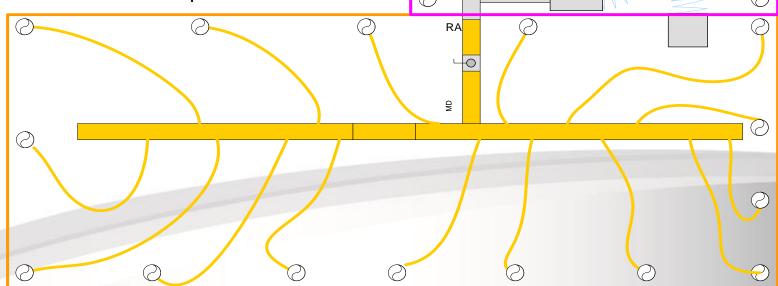
Outlets **#1 Screwdriver**

Design Considerations for Zoning

- Design DX systems with 2 or 3 zones max and must be used with a 2 stage condenser.
 - Unlimited with Chiller applications
- All DX zones must have a minimum of 3.5 outlets per ton
 - (per zone)
 - 4 ton system
 - $4 \times 3.5 = 14$ outlets per zone minimum
 - 3 zones x 14 outlets = 42 outlets total
 - 42 outlets divided by 4 tons = 10 outlets/ton
- Not recommended to use a bypass duct on DX coil systems

Zone 2 Load requires 6 Outlets

ΑH

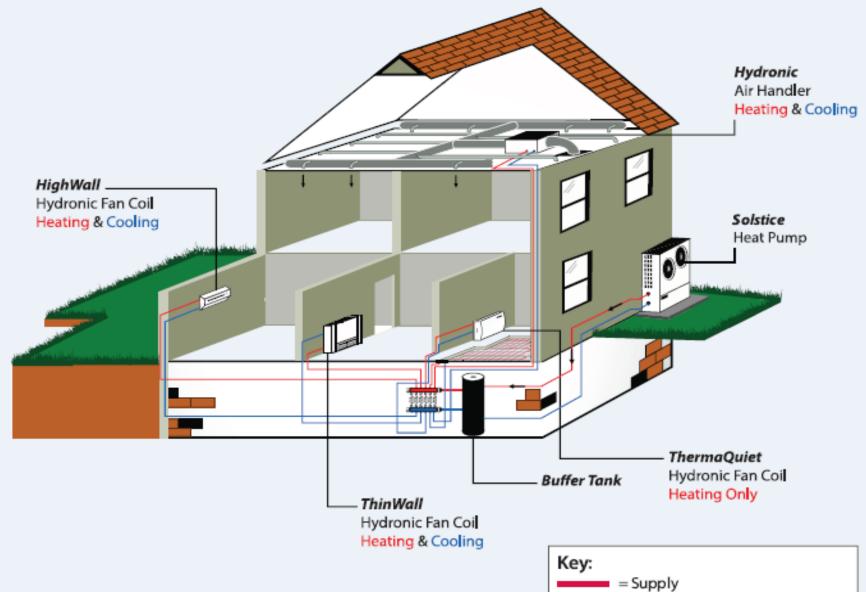

3 ton 2 Zone (3 ton X 3.5 = 11 outlets per zone <u>minimum</u>)

Z-1 = 15 Outlets

Z-2 = 11 Outlets

26 outlets Total

Zone 1 Load requires 15 Outlets


8/21/2017

Basic 2 and 3 Zone System Minimum Outlet Required In Each Zone

System Tonnage	2 Zone # of Outlets in each Zone	2 Zone System Total Outlets	3 Zone Outlets in each Zone	3 Zone System Total Outlets
2	7	14	7	21
2.5	9	18	9	27
3	11	22	11	33
3.5	12-13	24	12	36
4	14	28	14	42
5	18	36	18	54

Installation Rules

SPACE PACER HYDRONICS

= Return

Illustration depicts heating application. In cooling applications chilled water replaces hot water supply lines.

Performance

SCM-036 Heating Operation at 120°F

Ambient Temp	Capacity BTU/hr	Chiller Power Watts	Chiller COP
47°F	36,840	4,070	2.7
32°F	28,500	3,790	2.2
17°F	20,160	3,710	1.6

SCM-060 Heating Operation at 120°F

Ambient Temp	Capacity BTU/hr	Chiller Power Watts	Chiller COP
47°F	52,200	5,768	2.7
32°F	40,350	5,371	2.2
17°F	28,500	5,249	1.6

SCM-036 Cooling Operation at 44°F Water

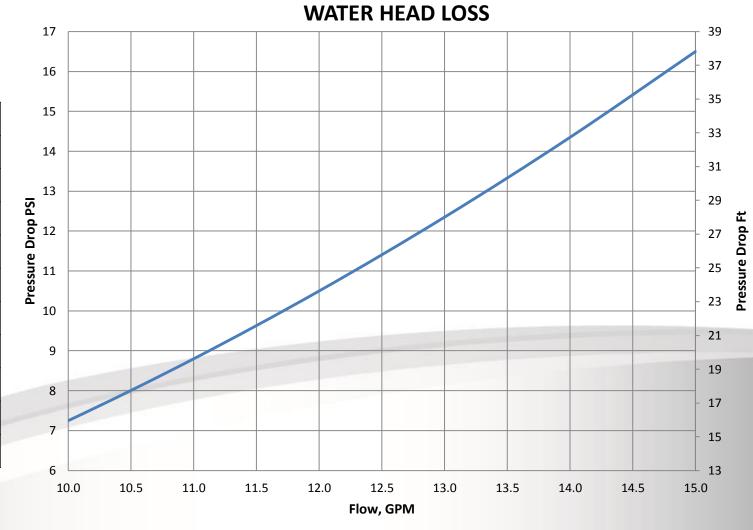
Ambient Temp	Capacity BTU/hr	Chiller Power Watts		
82°F	38,500	3,208	3.6	12
95°F	36,000	3,750	2.8	9.6

SCM-060 Cooling Operation at 44°F Water

Ambient Temp	Capacity BTU/hr	Chiller Power Watts	Chiller COP	Chiller EER
82°F	57,500	5,227	3.2	11
95°F	48,000	5,517	2.5	8.7

Item	Units	SCM-036	SCM-060	Item	Units	SCM-036	SCM-060
Cooling capacity (Note 2)	Btuh / KW	34,000 / 10.0	46,000 / 13.5	Supply voltage	VAC	230/1/60	230/1/60
Heating capacity (Note 3)	Btuh / KW	44,000 / 13.0	60,000 / 17.0	Running current, cooling (Note 1) Amps		17.6	26.4
Fan speed	RPM	850	850	Running current, heating (Note 1) Amps		13.1	21.3
Noise level	dB(A)	56	56	MCA (Note 1)	Amps	19.7	30.3
Water volume	Gallons	2	2.5				
Supply connection	Inches NPT	1	1	Return connection	Inches NPT	1	1
Minimum supply temperature	°F	36	36	Maximum supply temperature	°F	125	125
Minimum flow	GPM	7	10	Maximum flow	GPM	12	15
Pressure drop at minimum flow	Feet WC	8	17	Pressure drop at maximum flow	Feet WC	21	28
Net weight	Lbs	337	386	Operating weight	Lbs	354	407
Shipping weight	Lbs	346	395	Shipping dimensions	Inches	47 x 18 x 60	47 x 18 x 60

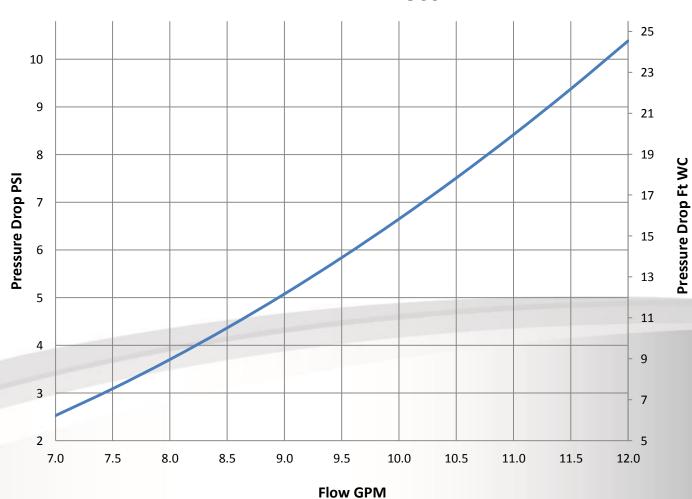
Note 1: Electrical ratings DO NOT include water pump amp draw. This pump is supplied by the installer. Add the current draw of the pump to the values listed above. Adjust the MCA accordingly.


Note 2: Performance at 95° ambient temperature, 45° water

Note 3: Performance at 47° ambient temperature, 115° water

SCM-060

Flow Pressure Drop


GPM	PSI	Ft WC
10.0	7.3	16.7
10.5	8.0	18.5
11.0	8.8	20.3
11.5	9.6	22.2
12.0	10.5	24.2
12.5	11.4	26.3
13.0	12.4	28.5
13.5	13.3	30.7
14.0	14.4	33.1
14.5	15.4	35.5
15.0	16.5	38.0

SCM-036

WATER HEAD LOSS

Flow	Pressure Drop				
GPM	PSI	Ft WC			
7.0	2.7	6.3			
7.5	3.3	7.6			
8.0	3.9	9.0			
8.5	4.6	10.5			
9.0	5.3	12.2			
9.5	6.0	13.9			
10.0	6.9	15.8			
10.5	7.7	17.8			
11.0	8.6	19.9			
11.5	9.6	22.1			
12.0	10.6	24.4			

Glycol/water system design

SpacePak heat pump/chiller capacity — The SCM capacity is reduced as glycol percentage increases. Multiply the rated capacity by the multiplier listed in Figure 8.

Figure 8 SCM glycol concentration (10% min, 50% max)

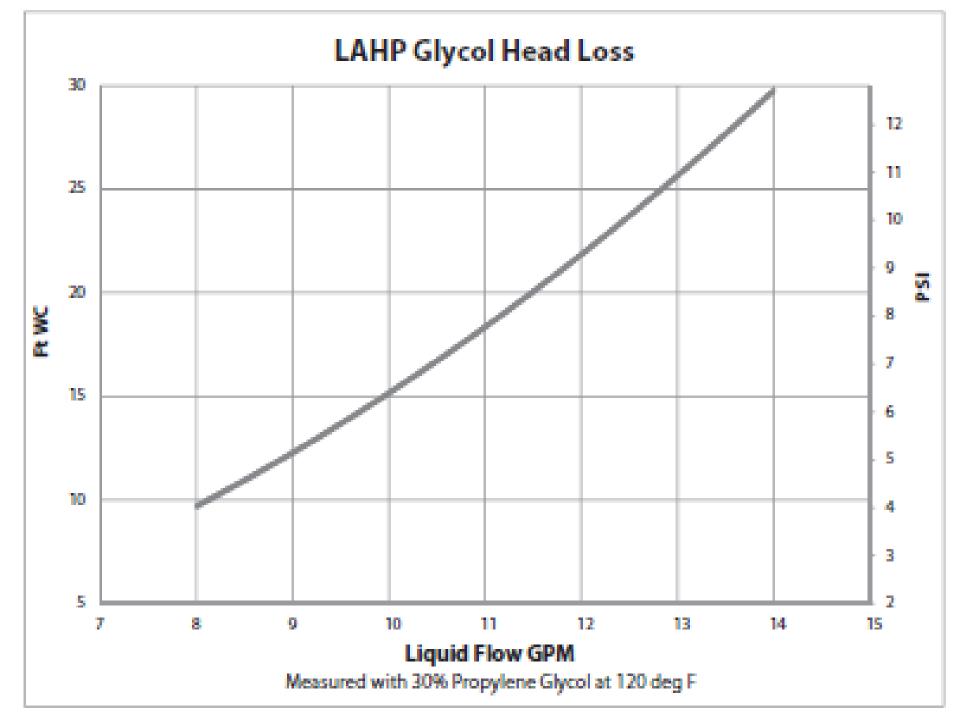
Ethylene glycol %	10	20	30	40	50
Min ambient temp, °F	23	14	2	-13	-36
SpacePak capacity multiplier	.98	.96	.93	.91	.89
Pressure drop multiplier (cooling)	1.06	1.12	1.16	1.25	1.36
Pressure drop multiplier (heating)	1.06	1.12	1.16	1.22	1.28

Propylene glycol %	10	20	30	40	50
Min ambient temp, °F	26	18	8	-7	-29
SpacePak capacity multiplier	.99	.98	.96	.93	.88
Pressure drop multiplier (cooling)	1.10	1.20	1.34	1.50	1.65
Pressure drop multiplier (heating)	1.10	1.20	1.34	1.46	1.50

Solstice Extreme, SpacePak's low ambient heat pump provides primary heating and cooling even in severe weather climates. Its environmentally friendly design uses EVI technology and the clean efficient characteristics of hydronics as its primary energy source to deliver perfectly conditioned air to any occupied space.

Standard Features

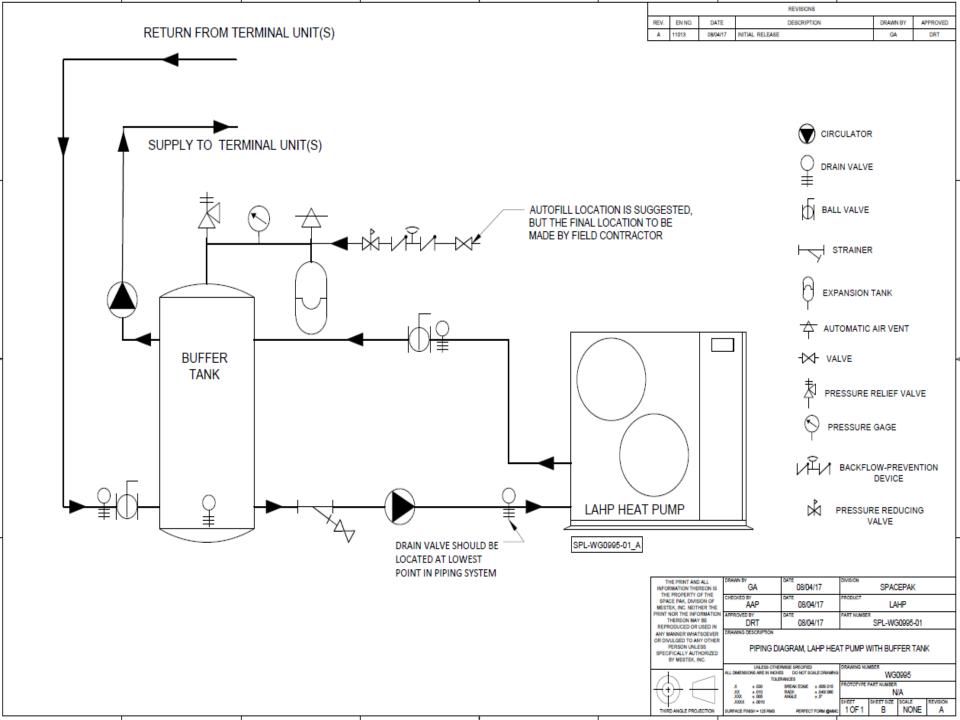
- · Enhanced Vapor Injection
- 64,680 BTU/h at 47°F Ambient
- 3.3 Ton of Cooling at 95°F Ambient
- Simple Piping & Pumping
- Installation & Service Friendly
- Easily Zoned
- Proven Integrated Control
- Outdoor Reset
- Green Hydronic Energy No Refrigerant in Occupied Space
- Low Ambient Freeze Protection

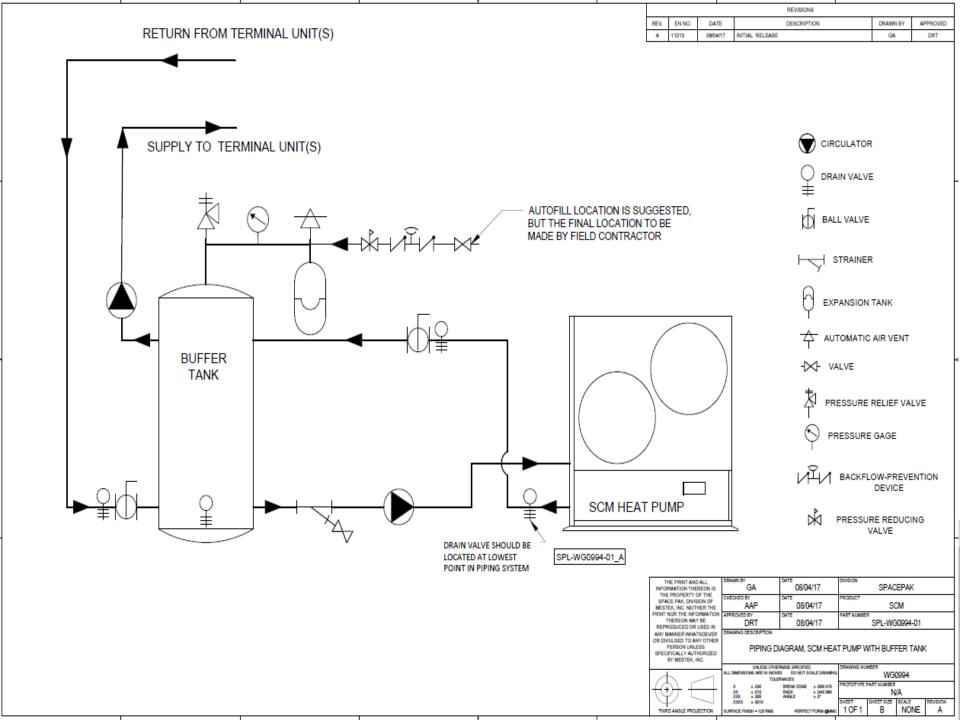

Specifications

Model	LAHP - 048	COP
Heating Capacity (47°F Ambient, 120°F Supply Water)	64,680 BTUh (18.9 kW)	3.18
Heating Capacity (17°F Ambient, 120°F Supply Water)	46,440 BTUh (13.6 kW)	2.35
Heating Capacity (5°F Ambient, 120°F Supply Water)	39,240 BTUh (11.5 kW)	2.35
Cooling Capacity (95°F Ambient, 44°F Supply Water)	40,000 BTUh (11.7 kW)	2.43
Voltage	230V/1ph/60Hz	
Min Supply Temp	42°F (5.5°C)	
Max Supply Temp	125°F (52°C)	
Min Water Flow	10 GPM (37.8 I/min)	
Nominal Water Flow	12 GPM (45.4 I/min)	
dP@ Max Flow	17.2 ft (35.8 kPa)	
Heating Current	31 Amps	
Cooling Current	23.5 Amps	
Noise Level	62 dB (A)	
Compressor	Scroll	
Installed Weight	386 lbs (175 Kg)	

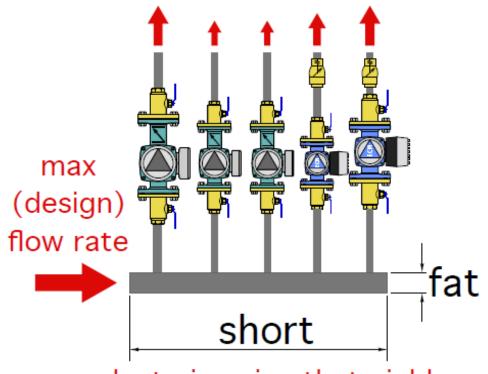
Glycol/Water System

LAHP Glycol Concentrations (30% Minimum, 50% Maximum)


Ethylene Glycol %	10	20	30	40	50
Min. Ambient Temp	23°F/5°C	14°F/10°C	2°F/-17°C	-13°F/-25°C	-36°F/-38°C
SpacePak Capacity Multiplier	0.98	0.96	0.93	0.91	0.89
Pressure Drop Multiplier (COOLING)	1.06	1.12	1.16	1.25	1.36
Pressure Drop Multiplier (HEATING)	1.06	1.12	1.16	1.22	1.28
Propylene Glycol %	10	20	30	40	50
Min. Ambient Temp	26°F/3°C	18°F/8°C	8°F/-13°C	-7°F/-22°C	-29°F/-34°C
SpacePak Capacity Multiplier	0.99	0.98	0.96	0.93	0.88
Pressure Drop Multiplier (COOLING)	1.10	1.20	1.34	1.50	1.65
Pressure Drop Multiplier (HEATING)	1.10	1.20	1.34	1.46	1.50



Buffer Tank



- 5 ton chiller
- 5 ton x 5 gallons = 25 gallons minimum butter tank
- 4 ton LAHP chiller
- 4 tons x 10 gallons = 40 gallon minimum buffer tank
- 3 ton chiller
- 3 ton x 5 gallons = 15 gallons minimum buffer tank

So what's EXACTLY is a short / fat header???

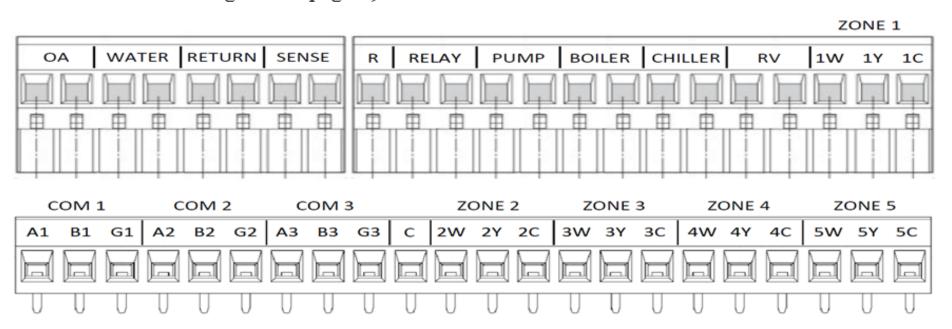
select pipe size that yields a flow velocity no higher than 2 feet per second

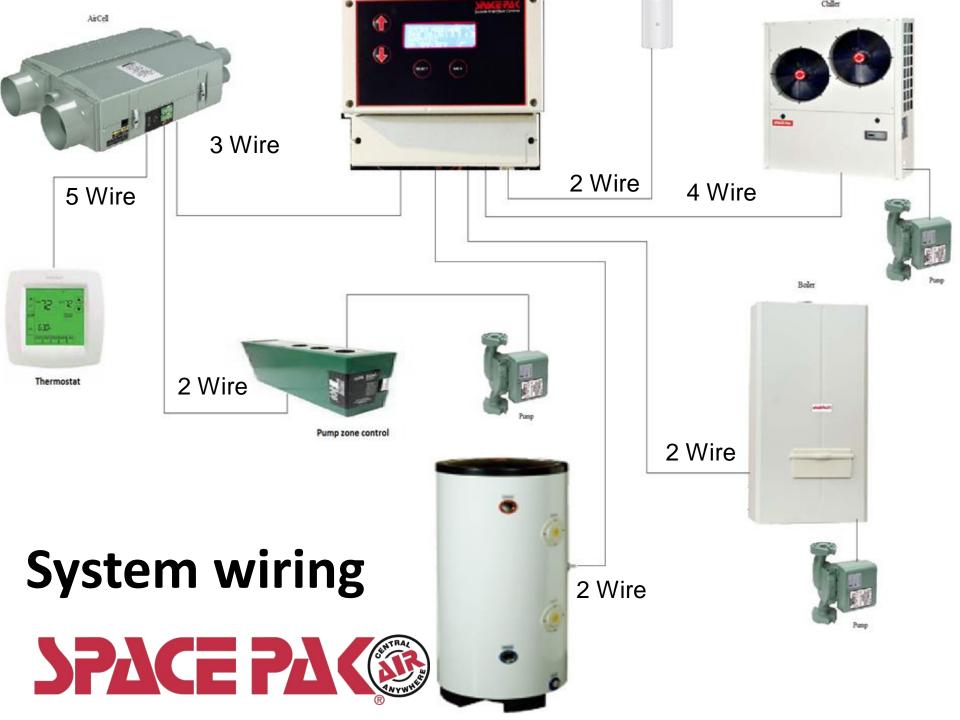
Tubing	Flow rate to establish 2 ft/sec flow velocity		
1/2" type M copper	1.6 gpm		
3/4" type M copper	3.2 gpm		
1" type M copper	5.5 gpm		
1.25" type M copper	8.2 gpm		
1.5" type M copper	11.4 gpm		
2" type M copper	19.8 gpm		
2.5" type M copper	30.5 gpm		
3" type M copper	43.6 gpm		

Copper Pipe	Pressure	e Losses	(Type L)			
	Pressu	re Drop, F	t water/10	<u>OOFt</u>			
Flow rate GPM	1/2"	3/4''	1"	1-1/4''	1-1/2''	2''	
1	2.7	0.4					
2	10	1.5	0.4				
3	21	3.1	0.8	0.3			
4		5.4	1.3	0.5	0.2		
5		8	2	0.8	0.3		
6		11	2.8	1	0.5		
7		15	3.6	1.4	0.6		
8		19	4.6	1.7	0.8		
9			5.9	2.1	0.9	0.2	
10			7	2.6	1.1	0.3	
11			8.5	3.1	1.3	0.3	
12			10	3.6	1.5	0.4	
14			13	5	2	0.5	
16			17	6.1	2.6	0.7	
18			21	7.7	3.2	0.8	
20				9.5	4	1	
22				11	4.6	1.2	
24				13	5.5	1.4	
26				15.5	6.5	1.6	
28				17.5	7.3	1.8	
30				20	8.2	2	
32					9.4	2.3	
34					10.5	2.6	
36					11.5	2.9	

Pex Pipe Pressure Losses						
	Pressure Drop, Ft water/100Ft					
Flow rate GPM	1/2"	3/4''	1''	1-1/4''	1-1/2"	2''
1	3.7	0.7	0.2	0.09	0.05	0.01
2	12.7	2.5	0.7	0.2	0.14	0.05
3	26.1	5.1	1.6	0.7	0.2	0.07
4	43.8	8.5	2.5	0.9	0.5	0.1
5	65.3	12.9	3.9	1.4	0.7	0.2
6	90.7	17.8	5.3	2.1	0.9	0.2
7		23.5	7.2	2.8	1.2	0.2
8		29.8	9	3.5	1.6	0.5
9		36.9	11.1	4.2	1.8	0.5
10		44.5	13.4	5.1	2.3	0.7
11		52.8	15.9	6	2.8	0.7
12		61.8	18.7	7.2	3.2	0.9
14			24.5	9.5	4.2	1.2
16			31.1	12	5.3	1.4
18			38.5	14.8	6.7	1.8
20			46.6	17.8	8.1	2.3
22				21.2	9.5	2.5
24				24.7	11.1	3
26				28.6	12.9	3.5
28				32.8	14.8	3.9
30				36.9	16.6	4.6
32					18.7	5.1
34					20.8	5.8
36					23.1	6.2
Highlighted numbers indicate 8 f/s maximum required by some plumbing codes						

SPACEPAK SYSTEM INTERFACE CONTROL - SSIC


- Takes Inputs from up to 5 Air Handlers
- Outputs: Boiler, Chiller Enable, Chiller Reversing Valve, Pump
- Air Handlers Receive Calls from Tstats, Outputs Heating or Cooling Call to Interface Control
- Includes Outdoor Air Temp Sensor & Water Temp Sensor/Buffer Tank
- Firmware Updates through USB


Wiring

AWARNING Electrical shock hazard - Disconnect all electrical power before wiring the unit.

- Remove the lower access panel to gain access to the wire terminals.
- Pass the wires from the Air Handlers, Pump, Chiller, etc. through the grommets at the bottom
 the unit and plug into their corresponding connector (see below or for more detailed informat
 see the wire diagram on page 4).

OA	Outdoor Air Temperature Sensor	ZONEX	Connection from Zone X (1-5) Air Handler		
WATER	Water Temperature Sensor	xw	24VAC Heating Signal from Air Handler		
RETURN	Return Temperature Sensor	XY	24VAC Cooling Signal from Air Handler		
SENSE	Misc. Temperature Sensor (N/A*)	xc	Ground from Air Handler		
R	24VAC	COM X	Connections for Future Models (N/A*)		
RELAY	Misc. Relay for Future Models (N/A*)	c	24VAC Return		
PUMP	Dry Contact Relay to activate the Pump				
BOILER	Dry Contact Relay to activate the Boiler				
CHILLER	Dry Contact Relay to activate the Chiller's enable				
RV	Dry Contact Relay to activate Chiller's Reversing Valve				

New Team Provides Pre-Sale Support

- Gain instant access to our Pre-Sales Support Team through
- PreSaleSupport@SpacePak.com. Available to representatives, wholesalers and contractors, PreSaleSupport@SpacePak.com is supported by a full team of application engineers to provide optimal turnaround in answering your questions regarding system design and layout as well as assistance in equipment selection and job quoting.
- Please note any questions regarding equipment already shipped should be directed to <u>TechnicalService@SpacePak.com</u>.

